We model the acceleration of energetic particles due to shear and centrifugal effects in rotating astrophysical jets. The appropriate equation describing the diffusive transport of energetic particles in a collisionless, rotating background flow is derived and analytical steady state solutions are discussed. In particular, by considering velocity profiles from rigid, over flat to Keplerian rotation, the effects of centrifugal and shear acceleration of particles scattered by magnetic inhomogeneities are distinguished. In the case where shear acceleration dominates, it is confirmed that power law particle momentum solutions $f(p) \propto p^{-(3+\alpha)}$ exist, if the mean scattering time $\tau_c \propto p^{\alpha}$ is an increasing function of momentum. We show that for a more complex interplay between shear and centrifugal acceleration, the recovered power law momentum spectra might be significantly steeper but flatten with increasing azimuthal velocity due to the increasing centrifugal effects. The possible relevance of shear and centrifugal acceleration for the observed extended emission in AGN is demonstrated for the case of the jet in the quasar 3C273.
展开▼
机译:我们对由于旋转天体物理射流中的剪切和离心效应而导致的高能粒子加速建模。推导了描述高能粒子在无碰撞旋转背景流中的扩散输运的适当方程式,并讨论了解析稳态解。特别地,通过考虑从刚性旋转,平面旋转到Keplerian旋转的速度分布,可以区分由磁不均匀性散射的粒子的离心和剪切加速度的影响。在剪切加速度占主导的情况下,如果平均散射时间$ \ tau_c \ propto p ^,则确认存在幂律粒子动量解$ f(p)\ propto p ^ {-(3+ \ alpha)} $。 {\ alpha} $是动量的递增函数。我们显示出,对于剪切加速度和离心加速度之间更复杂的相互作用,由于增加的离心作用,所恢复的幂律动量谱可能会更陡峭但随着方位角速度的增加而变得平坦。对于类星体3C273中的射流,证明了AGN中观测到的扩展发射与剪切加速度和离心加速度的可能相关性。
展开▼